Abstract

Large-scale optical switch networks employ wavelength division multiplexing to expand and facilitate multiple input and outputs. Such networks can be implemented with the Mach-Zehnder interferometer (MZI) as the building block. A fully-loaded MZI switch, meaning one with two optical signals at its two inputs and one that is capable of simultaneously switching those inputs to its two outputs, reduces the number building blocks within the network, and as a result makes them more power and area efficient. However, for practical operation, such MZI switches need to be automatically controlled for overcoming fabrication and thermal variations. We present an interference-based monitoring method that enables automatically switching, tuning, and stabilizing of a fully-loaded 2×2 MZI optical switch and demonstrate a prototype on an SOI platform. Using the proposed device and off-the-shelf electronics, we demonstrate automatic tuning and stabilization of an MZI switch with 12.5 Gb/s and 25 Gb/s data rates and channel spacing as small as 1 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.