Abstract

The monitoring and assessment of ageing underground tunnels is critical to ensure their serviceability, stability, and safety as arteries for a transport network in the long term. This paper first comprehensively reviewed the long-term tunnel performance monitoring case studies, aimed at highlighting the limited field monitoring data and identifying research gaps. It was found that previous studies largely focused on the performance of single tunnel sections subject to short-term disturbances (e.g., adjacent excavation), whereas limited efforts concentrated on the long-term performance of twin tunnels, let alone those with cross passages, under the influence of deteriorations. To this end, a Wireless Sensor Network (WSN) was deployed at a critical vehicle cross passage (VCP) twin tunnel section of Dublin Port Tunnel to monitor its long-term ageing performance with time, in addition to the existing long-term water leakage and lining crack monitoring. The evolvement of lining crack and water leakage since 2010 indicated the progressive deteriorations of the monitoring section, and the deployed WSN monitoring of lining inclination demonstrated a robust sensor deployment layout and monitoring plan for (quasi) real-time monitoring for a confined underground cross passage twin tunnel network. An analytical solution was proposed to convert tunnel inclination to horizontal deformation, with the converted measurements suggesting that even more than one decade after construction, both twin tunnels are still moving horizontally towards the VCP centreline in the long term, primarily due to twin tunnel interaction. Along tunnel longitudinal direction, the closer to the VCP, the greater tunnel deformation rate is, revealing the effect of cross passage on tunnel differential longitudinal behaviour, in agreement with hypotheses and numerical results in previous studies. The field observations were believed to be attributed to the two mechanisms which are hydro-geological degradation of the surrounding ground and hydro-mechanical deterioration of the tunnel, where the correlation between tunnel deformation and deteriorations was detailed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.