Abstract

Inundation dynamics coupled with seasonal information is critical to study the wetland environment. Analyses based on remotely sensed data are the most effective means to monitor and investigate wetland inundation dynamics. For the first time, this study deployed an automated thresholding method to quantify and compare the annual inundation characteristics in dry and wet seasons in the Everglades, using Landsat imagery in Google Earth Engine (GEE). This research presents the long-term time series maps from 2002 to 2021, with a comprehensive spatiotemporal depiction of inundation. In this paper, we bridged the research gap of space-time analysis for multi-season inundation dynamics, which is urgently needed for the Everglades wetland. Within a GIS-based framework, we integrated statistical models, such as Mann–Kendall and Sen’s Slope tests, to track the evolutionary trend of seasonal inundation dynamics. The spatiotemporal analyses highlight the significant differences in wet and dry seasons through time and space. The stationary or permanent inundation is more likely to be distributed along the coastal regions (Gulf of Mexico and Florida Bay) of the Everglades, presenting a warning regarding their vulnerability to sea level rise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call