Abstract

This paper goal was to increase the quality of the drying ware and to lower the drying scarp rate in one local brick factory. The registration of drying air parameters (temperature, humidity and velocity) along the dryer channels as well as the drying ware linear shrinkage and mass change were monitored for a month. Material and Energy balances were also recorded. Results have revealed that the drying air humidity and temperature profiles were not evenly distributed along the height of the drying tunnels. The ambient air breakthrough into the dryer was experimentally identified and quantified. It was the cause of the product quality deterioration and the reason why the critical and residual moisture in some of the products was larger than the desired one. Based on monitored data and mass and energy balances a solution was proposed for preventing the “false” air breakthrough, upgrade of the existing dryer fans and installation of the novel, measuring equipment. A hypothetical solution for increasing the capacity of the dryer, which uses the registered material and energy balances as well as factory management expectation, that the production of 50.000 masonry units per day will be achieved soon, was given also.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.