Abstract

Wuhan, one of China's megacities with rapid development, is facing serious surface subsidence. In this study, we combined MT-InSAR, geo-detector, and LSTM (Long Short-Term Memory) to achieve the monitoring, analysis, and prediction of surface subsidence in the main urban districts of Wuhan. The effectiveness of MT-InSAR in monitoring surface subsidence was validated against leveling results. During the monitoring period, the maximum subsidence velocity and uplift velocity were −53.3 mm/year and 18.0 mm/year, respectively. We identified six subsidence regions and explored their deformation characteristics. Further, we analyzed the relationship between the surface subsidence and influencing factors using the geo-detector in a quantitative manner. Our study revealed that the distance to soft soils had the greatest explanatory power on the subsidence. However, we also confirmed that subsidence was affected via coupling effects from multiple factors, suggesting a complex reinforcing relationship among influencing factors. The interaction between the distance to soft soils and the distance to karst collapse prone areas had the largest joint explanatory power on subsidence. Further, we constructed a data-driven LSTM model to predict and analyze the subsidence. The results showed that the LSTM model achieved great performance and presented strong universality, suggesting that it can be used for subsidence prediction in large geographic areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.