Abstract

We used electrical resistance tomography (ERT) to map the subsurface distribution of a steam flood as a function of time as part of a prototype environmental restoration process performed by the Dynamic Underground Stripping Project. We evaluated the capability of ERT to monitor changes in the soil resistivity during the steam injection process using a dipole‐dipole measurement technique to measure the bulk electrical resistivity distribution in the soil mass. The injected steam caused changes in the soil's resistivity because the steam displaced some of the native pore water, increased the pore water and soil temperatures and changed the ionic content of the pore water. We could detect the effects of steam invasion by mapping changes in the soil resistivity as a function of space and time. The ERT tomographs are compared with induction well logs, formation temperature logs and lithologic logs. These comparisons suggest that the ERT tomographs mapped the formation regions invaded by the steam flood. The data also suggest that steam invasion was limited in vertical extent to a gravel horizon at depth of approximately 43 m. The tomographs show that with time, the steam invasion zone extended laterally to all areas monitored by the ERT technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.