Abstract

An electronic and spectroscopic study of dielectric‐barrier discharge transition from the Townsend to the filamentary mode is presented. The discharge is generated under pure nitrogen flow at atmospheric pressure in a reactor with parallel configuration of cylindrical electrodes covered with Al2O3 dielectrics, applying a frequency of 4.85 kHz. The goal of the study was to find optimal conditions for observation of the Herman‐infrared (HIR) transition (C” → A') in a perspective to develop and test a ro‐vibrational model for this quintet band. We have focused on finding the maximum emissivity of the HIR transition in the homogeneous discharge regime as it offers a more suitable source for calibrating the HIR model. Besides the capability of generating a spatially homogeneous type of radiation, our discharge design also allowed the observation of HIR without detectable interference from the first positive system of nitrogen which is not common for atmospheric pressure discharges. In the study, a time‐resolved observation of the NOγ system, the second positive and the HIR nitrogen systems were performed and their emissivities analysed as a function of the discharge period and power. The optimum for the observation of the HIR system was found at 2.94 W (power density of 6 W/cm3), corresponding to the Townsend discharge just before its transition to the filamentary one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.