Abstract

Context. The understanding of the accretion process has a central role in the understanding of star and planet formation. Aims. We aim to test how accretion variability influences previous correlation analyses of the relation between X-ray activity and accretion rates, which is important for understanding the evolution of circumstellar disks and disk photoevaporation. Methods. We monitored accreting stars in the Orion Nebula Cluster from November 24, 2014, until February 17, 2019, for 42 epochs with the Wendelstein Wide Field Imager in the Sloan Digital Sky Survey u′g′r′ filters on the 2 m Fraunhofer Telescope on Mount Wendelstein. Mass accretion rates were determined from the measured ultraviolet excess. The influence of the mass accretion rate variability on the relation between X-ray luminosities and mass accretion rates was analyzed statistically. Results. We find a typical interquartile range of ∼0.3 dex for the mass accretion rate variability on timescales from weeks to ∼2 yr. The variability has likely no significant influence on a correlation analysis of the X-ray luminosity and the mass accretion rate observed at different times when the sample size is large enough. Conclusions. The observed anticorrelation between the X-ray luminosity and the mass accretion rate predicted by models of photoevaporation-starved accretion is likely not due to a bias introduced by different observing times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.