Abstract

From the defects-free self-assembled organic layers (SAMs) of CH3([Formula: see text]SH molecules with short chain lengths ([Formula: see text]) electrodeposited on the (111) surface of monocrystalline gold previously prepared, monitored defects (pinholes) were potential-induced from cyclic partial reduction of SAMs at an appropriate potential. Electrochemical impedance measurements were in-situ conducted and [Fe(CN)6][Formula: see text] ions were used as probes for mass and charge transfer. Interface evolution was modeled with an equivalent electrical circuit containing two distinct constant-phase elements (CPEs). One is a generalized semi-infinite Warburg element in series with a charge transfer resistance attributed to subdiffusion phenomenon through leaky sublayers at low frequencies; the other CPE is used for characterizing the interface heterogeneity at medium and high frequencies. At low frequencies, electrochemical impedance measurements show subdiffusion phenomenon, which depends on the remaining sublayer and its thickness. When the defect density increases, diffusion tends to be ordinary, obeying the Fick’s law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.