Abstract

This research combines field, laboratory and numerical investigations to estimate the development of a wetting front within a 1.2 m residual soil mantle on a steep forested slope during rainfall events. The field-monitored variations in matric suction due to rain-water infiltration during various events revealed that the maximum infiltration rate was much higher when the wetting front resided in the upper 20 cm of soil compared to the case when the wetting front advanced to depths > 20 cm. Laboratory investigations on soil hydraulic properties (i.e., soil water characteristic curve, and hydraulic conductivity) were useful to establish the parameters of a multilayer finite-element model for one-dimensional vertical infiltration. These parameters were subsequently calibrated by matching the predicted and field measured transient pore water pressure responses during actual rainstorms with irregular rainfall patterns. The calibrated simulation model was used to assess the migration of the wetting front under uniform rainfall with different intensities. Based on the numerical results, a hyperbolic equation was developed to predict the duration of uniform rainfall required for the propagation of wetting front to a certain depth for a given rainfall intensity. The proposed equation was subsequently tested against field-monitored advancements of the wetting front during real rainstorms with variable rainfall intensity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.