Abstract

We prove the existence of solutions for the Monge minimization problem, addressed in a metric measure space (X,d,m) enjoying the Riemannian curvature-dimension condition RCD∗(K,N), with N<∞. For the first marginal measure, we assume that μ0≪m. As a corollary, we obtain that the Monge problem and its relaxed version, the Monge–Kantorovich problem, attain the same minimal value.Moreover we prove a structure theorem for d-cyclically monotone sets: neglecting a set of zero m-measure they do not contain any branching structures, that is, they can be written as the disjoint union of the image of a disjoint family of geodesics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.