Abstract
When deep convolutional neural networks perform feature extraction, the features computed at each layer express different abstractions of visual information. The earlier layers extract highly compact low-level features such as bandpass and directional primitives, whereas deeper layers extract structural features of increasing abstraction, similar to contours, shapes, and edges, becoming less effable as the depth increases. We propose a different kind of end-to-end no-reference (NR) image quality assessment (IQA) model, which is defined as a multi-depth output convolutional neural network (MoNET). It accomplishes this by mapping both shallow and deep features to perceived quality. MoNET delivers three outputs that express shallow (lower-level) and deep (high-level) features, and maps them to subjective quality scores. The multiple outputs are combined into a single, final quality score. MoNET does this by combining the responses of three learning machines, so it may be viewed as a form of ensemble learning. The experimental results on three public image quality databases show that our proposed model achieves better performance than other state-of-the-art NR IQA algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.