Abstract

In this study, we introduce the Mondrian Map, an innovative visualization tool inspired by Piet Mondrian's abstract art, to address the complexities inherent in visualizing biological networks. By converting intricate biological data into a structured and intuitive format, the Mondrian Map enables clear and meaningful representations of biological pathways, facilitating a deeper understanding of molecular dynamics. Each pathway is represented by a square whose size corresponds to fold change, with color indicating the direction of regulation (up or down) and statistical significance. The spatial arrangement of pathways is derived from language model embeddings, preserving neighborhood relationships and enabling the identification of clusters of related pathways. Additionally, colored lines highlight potential crosstalk between pathways, with distinctions between short- and long-range functional interactions. In a case study of glioblastoma multiforme (GBM), the Mondrian Map effectively revealed distinct pathway patterns across patient profiles at different stages of disease progression. These insights demonstrate the tool's potential to enhance downstream bioinformatics analysis by providing a more comprehensive and visually accessible overview of pathway interactions, offering new avenues for therapeutic exploration and personalized medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.