Abstract

I provide a derivation of some characteristic effects of Milgrom's modified Newtonian dynamics (MOND) from a fractional version of Newton's theory based on the fractional Poisson equation. I employ the properties of the fractional Laplacian to investigate the features of the fundamental solution of the proposed model. The key difference between MOND and the fractional theory introduced here is that the latter is an inherently linear theory, featuring a characteristic length scale $\ell$, whilst the former is ultimately nonlinear in nature and it is characterized by an acceleration scale $a_0$. Taking advantage of the Tully-Fisher relation, as the fractional order $s$ approaches $3/2$, I then connect the length scale $\ell$, emerging from this modification of Newton's gravity, with the critical acceleration $a_0$ of MOND. Finally, implications for galaxy rotation curves of a variable-order version of the model are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.