Abstract

Commercially available SiC fibers were coated with monazite (LaPO4) using a continuous vertical coater at 1100°C. Coated fibers were heat treated in dry air, argon, and laboratory air at 1200°C for 1–20 h. The tensile strengths of uncoated and coated fibers were measured and evaluated before and after heat treatment. Fiber coating did not degrade SiC fiber strength, but heat treatment afterwards caused significant degradation that correlated with silica scale thickness. Possible strength degradation mechanisms for the coated fibers are discussed. Coating morphology, microstructure, and SiC oxidation were observed with scanning electron microscopy and transmission electron microscopy. Monazite reacted with SiC to form lanthanum silicate (La2Si2O7) in argon, but was stable with SiC in air. Despite the large coefficient of thermal expansion difference between monazite and SiC, micron thick monazite coatings did not debond from most types of SiC fibers. Possible explanations for the thermomechanical stability of the monazite fiber coatings are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call