Abstract

Integrated, in situ textural, chemical and electron microprobe age analysis of monazite grains in a migmatitic metapelitic gneiss from the western Musgrave Block, central Australia has identified evidence for multiple events of growth and recrystallisation during poly-metamorphism in the Mesoproterozoic. Garnet + sillimanite-bearing metapelite underwent partial melting and segregation to palaeosome and leucosome during metamorphism between 1330 and 1296 Ma, with monazite grains in leucosome recording crystallisation at ∼1300 Ma. Monazite breakdown during melting is inferred to have occurred in the palaeosome. During a subsequent granulite facies event at ∼1200 Ma, deformation and metamorphism of leucosome and palaeosome resulted in partial disturbance of ages and potential minor growth on ∼1300 Ma monazite in leucosome. Growth of new, high-Y (+HREE) monazite in palaeosome domains occurred during garnet breakdown in the presence of sillimanite to cordierite and spinel, as a result of post-peak isothermal decompression. Diffusive enrichment of resorbed garnet rims in Y + HREE suggests garnet breakdown occurred slower than volume diffusion of REE. Monazite in both palaeosome and leucosome were subsequently partially to penetratively recrystallised during a retrogression event that is suggested to have occurred at ∼1150–1130 Ma. The intensity of recrystallisation and disturbance of ages appears linked to proximity to retrogressed garnet porphyroblasts and their occurrence in the relatively reactive or ‘fertile’ local environments provided by the palaeosome/mesosome volumes, which caused localised changes in retrogressive fluids towards compositions more aggressive to monazite. Like reaction textures, it is apparent that domainal equilibrium and reaction may control or at least strongly influence monazite REE and U–Th–Pb chemistry and hence ages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.