Abstract

One of the main concerns in nanotechnology is the utilization of nanomaterials in macroscopic applications without losing their extreme properties. In an effort to bridge the gap between the nano- and macroscales, we propose a clever fabrication method, the inverted floating method (IFM), for preparing freestanding chemical-vapor-deposited (CVD) graphene membranes. These freestanding membranes were then successfully suspended over a gap a half-millimeter in diameter. To understand the working principle of IFM, high-speed photography and white light interferometry were used to characterize and analyze the deformation behaviors of the freestanding graphene membranes in contact with a liquid during fabrication. Some nanoscale configurations in the macroscopic graphene membranes were able to be characterized by simple optical microscopy. The proposed IFM is a powerful approach to investigating the macroscopic structures of CVD graphene and enables the exploitation of freestanding CVD graphene for device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.