Abstract
Bounded treewidth and Monadic Second Order (MSO) logic have proved to be key concepts in establishing fixed-para-meter tractability results. Indeed, by Courcelle's Theorem we know: Any property of finite structures, which is expressible by an MSO sentence, can be decided in linear time (data complexity) if the structures have bounded treewidth.In principle, Courcelle's Theorem can be applied directly to construct concrete algorithms by transforming the MSO evaluation problem into a tree language recognition problem. The latter can then be solved via a finite tree automaton (FTA). However, this approach has turned out to be problematical, since even relatively simple MSO formulae may lead to a state explosion of the FTA.In this work we propose monadic datalog (i.e., data log where all intentional predicate symbols are unary) as an alternative method to tackle this class of fixed-parameter tractable problems. We show that if some property of finite structures is expressible in MSO then this property can also be expressed by means of a monadic datalog program over the structure plus the treedecomposition. Moreover, we show that the resulting fragment of datalogcan be evaluated in linear time (both w.r.t. the program size and w.r.t. the data size). This new approach is put to work by devising a new algorithm for the PRIMALITY problem (i.e., testing if some attribute in a relational schema is part of a key). We also report on experimental results with a prototype implementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.