Abstract

Abstract Spin texture in k-space is a consequence of spin splitting due to strong spin-orbit coupling and inversion symmetry breaking. It underlies fertile spin transport phenomena and is of crucial importance for spintronics. Here, we observe the spin texture in k-space of nominally centrosymmetric SrIrO3 grown on NdGaO3 (110) substrates, using nonlinear magnetotransport measurements. We demonstrate that the spin texture is not only induced by the interface, which inherently breaks the inversion symmetry in strong spin-orbit coupled SrIrO3 films, but also originates from the film bulk. Structural analysis reveals that thicker SrIrO3 films exhibit a strain gradient, which could be considered as a continuous change in lattice constant across different layers and breaks the inversion symmetry throughout the entire SrIrO3 films, giving rise to the spin texture in k-space. First-principles calculations reveal that the strain gradient creates large spin-splitting bands, inducing the spin texture with anisotropy, which is consistent with our experimental observations. Our results offer an efficient method for inducing the spin textures in k-space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call