Abstract

In this study, enhancement of the toroidal field (TF) ripple has been used as a tool in order to reveal the impact of the momentum pinch on the rotation profiles in H-mode JET discharges. The analysis showed that flatter rotation profiles were obtained in discharges with a high TF ripple, attributed to a smaller inward momentum convection. An average inward momentum pinch of approximately Vp ≈ 3.4 m s−1 and a normalized pinch value of RVp/χ ≈ 6.6 could explain the observation. The data show that the momentum at the edge affects the peaking of the rotation and momentum density profiles. Under the assumption that the heat and momentum diffusivities are equal, an estimate of the levels of the momentum pinch in all discharges in the JET rotation database was made. For H-mode discharge these ranged from 0.3 m s−1 < Vp < 17 m s−1, with 2 < RVp/χ < 10. A larger momentum pinch was found in discharges with a smaller density profile gradient length, i.e. a more peaked density profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.