Abstract

The paper concerns the mechanisms underlying the distribution of the bed shear stress in meandering bends. Literature indicates that cross-stream circulation strongly affects the redistribution of the downstream velocity, but the feedback between them is still poorly understood. The aim of this paper is to gain some insight into how the momentum transport by cross-stream circulation contributes to the bed shear stress redistribution. Experimental analysis, based on a detailed dataset collected in a large-amplitude meandering laboratory flume, is presented. From these data an evaluation is made of the terms in the depth-averaged momentum equations and the analysis is especially devoted to terms including the momentum transport by cross-sectional motion. Results confirm that these terms exert an important role in bed shear stress estimation and, thus, they have to be adequately included in the depth-averaged models. Based on measured data, an equation expressing the interrelation between the cross-sectional momentum and the downstream velocity is also introduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.