Abstract

A point-force model is used to study turbulent momentum transfer in the presence of moderate mass loadings of small (relative to Kolmogorov scales), dense (relative to the carrier phase density) particles. Turbulent Couette flow is simulated via direct numerical simulation, while individual particles are tracked as Lagrangian elements interacting with the carrier phase through a momentum coupling force. This force is computed based on the bulk drag of each particle, computed from its local slip velocity. By inspecting a parameter space consisting of particle Stokes number and mass loading, a general picture of how and under what conditions particles can alter near-wall turbulent flow is developed. In general, it is found that particles which adhere to the requirements for the point-particle approximation attenuate small-scale turbulence levels, as measured by wall-normal and spanwise velocity fluctuations, and decrease turbulent fluxes. Particles tend to weaken near-wall vortical activity, which in turn, through changes in burst/sweep intensities, weakens the ability of the turbulent carrier-phase motion to transfer momentum in the wall-normal direction. Compensating this effect is the often-ignored capacity of the dispersed phase to carry stress, resulting in a total momentum transfer which remains nearly unchanged. The results of this study can be used to interpret physical processes above the ocean surface, where sea spray potentially plays an important role in vertical momentum transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call