Abstract

Obtaining the real working details within solid oxide fuel cell (SOFC) stacks are essential to the commercializing of SOFC technology. However, high operation temperature and small channel space features are two obstacles to achieving these details. In order to predict the complex physical item distribution characteristics within those SOFC stacks adopting inter-digital fuel channels, a comprehensive 5-cell large-scale model is firstly developed. The 3D model consists of all the complex solid, space, and porous medium components. After high-quality messes are addressed, the momentum, species, energy, e− and O2− charge conservation equations, and anodic/cathodic electrochemical reaction equations are coupled to the corresponding zones. The air/fuel flows, hydrogen/oxygen mole fractions, temperature, electrochemical active sites, and electric current distributing details within the stack are successfully achieved. It is an important step to further optimize the component structures for balancing the physics-chemical processes on stack level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.