Abstract

We investigate the momentum and energy distributions of the two electrons in multiphoton double ionization of He by intense attosecond xuv pulses, based on a two-dimensional model. Two different patterns of the momentum distributions are identified, corresponding to the uncorrelated and correlated channels, respectively. Our analysis of the electron correlations focuses on two-photon and three-photon double ionization processes for different pulse durations and for different time delays after the pulses. For both two-photon and three-photon cases, a clear correlation valley in energy distributions is found when both electrons are ejected in opposite directions. This is mostly attributed to the electron correlations during the ionization of the first electron. We also find that when two electrons are ejected in the same direction, their Coulomb repulsion has an significant influence on the electron energy distributions during the postionization stage. Finally, in the case of three photon double ionization, we observe that the effects of the Coulomb repulsion become much more complicated, and a new catch-up collision phenomena is observed in the energy distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.