Abstract
While the energy loss near edge structures of metallic crystals can be calculated with a good accuracy using density functional theory based codes, core-level spectra of transition metal oxides show pronounced multiplet effects which are better described by atomic multiplet codes. We describe the formalism which allows to calculate momentum-resolved electron energy loss spectra in the electric dipole approximation from the atomic multiplet theory, and we apply this formalism to the calculation of energy loss magnetic chiral dichroic spectra of magnetic transition metal oxides. Explicit results are given for magnetite Fe 3O 4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.