Abstract

The method of projection is applied to a relativistic field theory of fermions interacting with a nonlinear scalar field, specifically the Friedberg-Lee soliton model. Projection is effected by operating on a localized “bag” state with the translation operator exp (iP·Z), and integrating overZ. The resulting state is an eigenstate of zero momentum. The energy and the expectation value of other physical operators can be expressed as Gaussian moments of the Hamiltonian or the physical operator times powers of the momentum operator taken with respect to the bag state. Renormalization in the one-loop approximation is discussed in detail for the boson sector, and briefly for the fermion sector. The method can be tested for convergence against nonexpansion techniques. The latter, however, cannot so easily handle distortion of the Bose modes or the distortion of the Dirac sea.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.