Abstract

AbstractThis paper proposes a novel method that enhances the optimization‐based elastic body solver. The proposed method tackles the element inversion problem, which is prevalent in the prediction‐projection approach for numerical simulation of elastic bodies. At the prediction stage, our method alleviates inversions such that the subsequent projection solver can benefit in stability and efficiency. To prevent excessive suppression of predicted inertial motion when alleviating, we introduce a velocity decomposition method and adapt only the non‐rigid motion while preserving the rigid motion, that is, linear and angular momenta. Thanks to the respected inertial motion in the prediction stage, our method produces lively motions while keeping the entire simulation more stable. The experiments demonstrate that our alleviation method successfully stabilizes the simulation and improves the efficiency particularly when large deformations hamper the solver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.