Abstract

Intercalation is an established technique for tailoring the electronic structure of epitaxial graphene. Moreover, it enables the synthesis of otherwise unstable two-dimensional (2D) layers of elements with unique physical properties compared to their bulk versions due to interfacial quantum confinement. In this work, we present uniformly Pb-intercalated quasi-freestanding monolayer graphene on SiC, which turns out to be essentially charge neutral with an unprecedented $p$-type carrier density of only $(5.5\pm2.5)\times10^9$ cm$^{-2}$. Probing the low-energy electronic structure throughout the entire first surface Brillouin zone by means of momentum microscopy, we clearly discern additional bands related to metallic 2D-Pb at the interface. Low-energy electron diffraction further reveals a $10\times10$ Moir\'e superperiodicity relative to graphene, counterparts of which cannot be directly identified in the available band structure data. Our experiments demonstrate 2D interlayer confinement and associated band structure formation of a heavy-element superconductor, paving the way towards strong spin-orbit coupling effects or even 2D superconductivity at the graphene/SiC interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.