Abstract

<p>The turbulent exchange of heat at the surface, including the sensible heat flux (SHF), is an important component of the surface energy balance (SEB) over glaciers and ice sheets. Yet, the turbulent heat fluxes are parameterized in all SEB models, which makes their contribution to the modelled ice ablation uncertain.</p><p>In this study, we present several years of continuous, daily, in situ observations of SHF (eddy-covariance) and ice ablation, taken at multiple contrasting sites across the ablation area of the Greenland ice sheet. We then compare these measurements to several SEB models with different settings for the surface roughness lengths.</p><p>We show that it is possible to accurately model the SHF and the daily ice ablation, provided that the prescribed surface roughness lengths, for both heat and momentum, are accurate. We propose a simple parameterization of these roughness lengths, based on both in-situ measurements and remotely sensed data (UAV, ICESat-2).  This updated parameterization can be implemented in SEB- and climate- models for improved simulations of ice sheet ablation and surface mass balance.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call