Abstract

AbstractWe establish unconditional ‐results for all weighted even moments of primes in arithmetic progressions. We also study the moments of these moments and establish lower bounds under the Generalized Riemann Hypothesis (GRH). Finally, under GRH and the Linear Independence Hypothesis (LI), we prove an asymptotic for all moments of the associated limiting distribution, which, in turn, indicates that our unconditional and GRH results are essentially best possible. Using our probabilistic results, we formulate a conjecture on the moments with a precise associated range of validity, which we believe is also best possible. This last conjecture implies a ‐analog of the Montgomery‐Soundararajan conjecture on the Gaussian distribution of primes in short intervals. The ideas in our proofs include a novel application of positivity in the explicit formula and the combinatorics of arrays of characters that are fixed by certain involutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.