Abstract

Devoted teachers and mentors during early childhood and adolescence nurtured my ambition to become a scientist, but it was not until I actually began doing experiments in college and graduate school that I was confident about that choice and of making it a reality. During my postdoctoral experiences and thereafter, I made several significant advances, most notably the discovery of the then novel acyl- and aminoacyl adenylates: the former as intermediates in fatty acyl coenzyme A (CoA) formation and the latter as precursors to aminoacyl tRNAs. In the early 1970s, my research changed from a focus on transcription and translation in Escherichia coli to the molecular genetics of mammalian cells. To that end, my laboratory developed a method for creating recombinant DNAs that led us and others, over the next two decades, to create increasingly sophisticated ways for introducing "foreign" DNAs into cultured mammalian cells and to target modifications of specific chromosomal loci. Circumstances surrounding that work drew me into the public policy debates regarding recombinant DNA practices. As an outgrowth of my commitment to teaching, I co-authored several textbooks on molecular genetics and a biography of George Beadle. The colleagues, students, and wealth of associates with whom I interacted have made being a scientist far richer than I can have imagined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.