Abstract

Eigenvalues are defined for any element of an algebra of observables and do not require a representation in terms of wave functions or density matrices. A systematic algebraic derivation based on moments is presented here for the harmonic oscillator, together with a perturbative treatment of anharmonic systems. In this process, a collection of inequalities is uncovered which amount to uncertainty relations for higher-order moments saturated by the harmonic-oscillator excited states. Similar saturation properties hold for anharmonic systems order by order in perturbation theory. The new method, based on recurrence relations for moments of a state combined with positivity conditions, is therefore able to show new physical features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.