Abstract
To analyze the effect of basic variable on output of the structure or system in reliability engineering, two moment-independent importance measures of the basic variable are proposed respectively on the failure probability and distribution function of the output. The importance measures proposed not only inherit the advantages of the traditional moment-independent importance measures, but also reflect the intrinsic relationship of the moment-independent measures and the corresponding variance-based importance measures. For the problem that the computational effort of the moment-independent importance measure is usually too high, the computation of the proposed moment-independent importance measures is transformed into that of the variance-based importance measures on their intrinsic relationship. And then combining the high efficient state dependent parameter (SDP) method for the calculation of the conditional moments of the model output, a SDP solution is established to solve two moment-independent importance measures. Several examples are used to demonstrate that the proposed importance measures can effectively describe the effect of the basic variable on the reliability of the structure system, and the established solution can obtain the two importance measures simultaneously with only a single set of model runs, which allows for a strong reduction of the computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.