Abstract

Understanding the chaotic motions of dynamic textures (DTs) is a challenging problem of video representation for different tasks in computer vision. This paper presents a new approach for an efficient DT representation by addressing the following novel concepts. First, a model of moment volumes is introduced as an effective pre-processing technique for enriching the robust and discriminative information of dynamic voxels with low computational cost. Second, two important extensions of Local Derivative Pattern operator are proposed to improve its performance in capturing directional features. Third, we present a new framework, called Momental Directional Patterns, taking into account the advantages of filtering and local-feature-based approaches to form effective DT descriptors. Furthermore, motivated by convolutional neural networks, the proposed framework is boosted by utilizing more global features extracted from max-pooling videos to improve the discrimination power of the descriptors. Our proposal is verified on benchmark datasets, i.e., UCLA, DynTex, and DynTex++, for DT classification issue. The experimental results substantiate the interest of our method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.