Abstract

This study evaluates the moment resisting capacity of the drift pin larch beam-column joint with slotted-in steel plates of larch laminated timber. It is reinforced with carbon fiber reinforced plastic (CFRP) to suppress the brittle fracture of the beam-column joint and improve the joint capacity using larch laminated timber, a wood material manufactured by multi-layering of timber as a structural member of heavy timber.The average maximum moment capacity of the control specimen was 16.9 kN·m and the average maximum moments of the Type-A (volume ratio of joint reinforced with CFRP: 3.6%) and Type-B (volume ratio of joint reinforced with CFRP: 5.4%) were increased by 46% and 62%, respectively, compared to that of the control specimen. The capacity of the joint, such as the average yield capacity, ultimate moment capacity, and ductility ratio, of the control, Type-A, and Type-B specimens increased as the reinforcement ratio of the CFRP increased. For the failure mode of the control specimen, splitting failure occurred in both the column and beam members in the end distance direction. However, the splitting failure did not occur in the beam member due to the improvement of the joint and ductility of the specimens reinforced with the CFRP. The Type-A specimen had improved joint capacity and ductility compared to the control specimen; however, brittle failure occurred owing to the external force exceeding the joint capacity. However, in some of the Type-B specimens, the splitting failure did not occur in the column and beam members due to the CFRP reinforcement. Particularly, the Type-B3 specimen exhibited ductility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.