Abstract

AbstractWe have determined a scalable apparent moment rate function (aMRF) that correctly predicts the peak ground acceleration (PGA), peak ground velocity (PGV), local magnitude, and the ratio of PGA/PGV for earthquakes 3.3 ≤ M ≤ 5.3. Using the NGA‐West2 database for 3.0 ≤ M ≤ 7.7, we find a break in scaling of LogPGA and LogPGV versus M around M ~ 5.3 with nearly linear scaling for LogPGA and LogPGV for 3.3 ≤ M ≤ 5.3. Temporal parameters tp and td—related to rise time and total duration—control the aMRF. Both scale with seismic moment. The Fourier amplitude spectrum of the aMRF has two corners between which the spectrum decays ~ f− 1. Significant attenuation along the raypath results in a Brune‐like spectrum with one corner fC. Assuming that fC ≅ 1/td, the aMRF predicts non‐self‐similar scaling and weak stress drop scaling . This aMRF can explain why stress drop is different from the stress parameter used to predict high‐frequency ground motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.