Abstract

The moment-method technique utilizing entire domain basis functions is applied to the analysis of large, axially symmetric reflector antennas. The electric surface current is modeled as a finite series of sinusoids whose domain consists of the entire generating curve. This expansion results in a matrix size of less than 5% of that produced with subdomain basis functions. Only a slight increase in the CPU requirements occurs from this analysis. The results from this technique show good agreement when compared to both physical optics and a subdomain-based moment-method formulation on small, axially fed paraboloidal and hyperboloidal reflector antennas. Extension to a large 100- lambda paraboloidal reflector with f/D=0.4 produces results comparable to that obtained using physical optics. Convergence is obtained with as few as two expansion terms per wavelength. Discretization of the generating curve with four points per wavelength leads to results which agree within 0.5 dB over data from a more densely defined curve. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.