Abstract
In this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming its complex (resp. real) variety is finite. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and semi-definite programming. While the border basis algorithms of Mourrain and Trébuchet (2005) are efficient and numerically stable for computing complex roots, algorithms based on moment matrices (Lasserre et al., 2008) allow the incorporation of additional polynomials, e.g., to restrict the computation to real roots or to eliminate multiple solutions. The proposed algorithm can be used to compute a border basis of the input ideal and, as opposed to other approaches, it can also compute the quotient structure of the (real) radical ideal directly, i.e., without prior algebraic techniques such as Gröbner bases. It thus combines the strength of existing algorithms and provides a unified treatment for the computation of border bases for the ideal, the radical ideal and the real radical ideal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.