Abstract

We consider moment functions of higher order. In our earlier paper, we have already investigated the moment functions of higher order on groups. The main purpose of this work is to prove characterization theorems for moment functions on the multivariate polynomial hypergroups and on the Sturm–Liouville hypergroups. In the first case, the moment generating functions of higher rank are partial derivatives (taken at zero) of the composition of generating polynomials of the hypergroup and functions whose coordinates are given by the formal power series. On Sturm–Liouville hypergroups the moment functions of higher rank are restrictions of even smooth functions that also satisfy certain boundary value problems. The second characterization of moment functions of higher rank on Sturm–Liouville hypergroups is given by means of an exponential family. In this case, the moment functions of higher rank are partial derivatives of an appropriately modified exponential family again taken at zero.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.