Abstract
Summary We consider a continuous time Markov switching model (MSM) which is widely used in mathematical finance. The aim is to estimate the parameters given observations in discrete time. Since there is no finite dimensional filter for estimating the underlying state of the MSM, it is not possible to compute numerically the maximum likelihood parameter estimate via the well known expectation maximization (EM) algorithm. Therefore in this paper, we propose a method of moments based parameter estimator. The moments of the observed process are computed explicitly as a function of the time discretization interval of the discrete time observation process. We then propose two algorithms for parameter estimation of the MSM. The first algorithm is based on a least-squares fit to the exact moments over different time lags, while the second algorithm is based on estimating the coefficients of the expansion (with respect to time) of the moments. Extensive numerical results comparing the algorithm with the EM algorithm for the discretized model are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.