Abstract

Patellofemoral anatomical dysplasia is associated with patellofemoral instability and pain. The closure of the knee physis occurs at the same age as the peak incidence of patellofemoral dislocation. This study determined the effect on the patellofemoral anatomical development in a rabbit epiphysiodesis model. Twenty-four skeletally immature New Zealand White rabbits were divided into three groups (a) distal femur epiphysiodesis (FE) (b) proximal tibia epiphysiodesis (TE) (c) control; no epiphysiodesis (C) performed at 6 weeks of age. The primary endpoint was shape analysis using three-dimensional reconstructions of micro-computed tomographys (CTs) performed at 30 weeks of age. The limb length ratios (femur:tibia) were significantly different for both FE (mean 0.72, SD 0.0381, P < .001) and TE (mean 0.91, SD 0.0383, P < .001) treatment groups compared to control (mean 0.81, SD 0.0073). Patella height, as measured from the most distal point of the patella to the tibial joint surface (modified Caton-Deschamps measurement), was lower (baja) in the FE and higher (alta) for the TE, compared with the control group. Our findings suggest femoral and tibial shortening can influence the development of the patellofemoral joint, which may be dictated by moment arm function and is potentially responsible for the etiology of patella alta. Future studies are warranted to explore this association further with the view for the development of treatment options for patella alta in human patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.