Abstract

Peak parking experiments were conducted to study the chromatographic behavior in a RPLC system consisting of a column packed with superficially porous C(18)-particles and a mixture of methanol and water (70/30, v/v). The values of the surface diffusion coefficient and the retention equilibrium constant of a column packed with superficially porous C(18)-particles were comparable to those of columns packed with a C(18)-silica monolith and full-porous C(18)-silica gel particles. The flow-rate dependence of HETP was hypothetically calculated by using moment equations to clarify the influence of the structural characteristics on the chromatographic behavior. The column efficiency of a column packed with the superficially porous particles is higher in the high flow-rate range than that with full-porous spherical particles. This is attributed to the smaller contribution of the intraparticulate mass transfer in the superficially porous particles to band broadening. The moment equations are effective for the quantitative analysis of chromatographic behavior of superficially porous particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.