Abstract

The development of efficient and noble-metal-free electrocatalysts for the challenging oxygen evolution reaction (OER) is crucial for sustainable energy solutions. In this work, a facile co-precipitation method, followed by thermal postsynthetic treatment in N2/air, was developed to synthesize molybdenum-doped α-Mn2O3 materials (Mn2O3:1.72%Mo, Mn2O3:2.64%Mo, Mn2O3:32.23%Mo, and Mn2O3:49.67%Mo) as low-cost water-oxidizing electrocatalysts. Powder X-ray diffraction (PXRD), extended X-ray absorption fine structure (EXAFS), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HRTEM) investigations showed the presence of strong distortions in the molybdenum-doped α-Mn2O3 host lattice (Mn2O3:2.64%Mo) and an average oxidation state of Mn2.8+. Several test assays demonstrated that these structural features significantly promote the OER activity. Mn2O3:2.64%Mo was found to exhibit very good activity among the series in cerium ammonium nitrate (CAN)-assisted water oxidation with a maximum turnover frequency (TOF) of 585 μmol O2 m–2 h–1, which is a 15-fold improvement of the pure α-Mn2O3 activity and higher than the value of the previously reported benchmark Mn-based catalyst, birnessite. The optimized catalyst (Mn2O3:2.64%Mo) excelled through a low onset potential (300 mV) and a promising overpotential of 570 mV for OER at a current density of 10 mA cm–2, which is only 20 mV above that of the noble metal benchmark RuO2 electrode and competitive with that of the most active Mn-based OER catalysts reported to date. Electrochemical impedance spectroscopy (EIS) studies demonstrated that the catalytically active surface area of Mn2O3:2.64%Mo is much higher than that of α-Mn2O3 for the OER at the applied potential. In addition, stability during 30 h without degradation was achieved, which exceeds that of a wide range of current noble-metal-free electrocatalysts. Our study provides a facile and effective approach for the preparation of economical and high-performance manganese-based electrocatalysts for water oxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.