Abstract

Hybrid supercapacitors (HSCs) bridge the unique advantages of batteries and capacitors and are considered promising energy storage devices for hybrid vehicles and other electronic gadgets. Lithium-ion capacitors (LICs) have attained particular interest due to their higher energy and power density than traditional supercapacitor devices. The limited voltage window and the deterioration of anode materials upsurged the demand for efficient and stable electrode materials. Two-dimensional (2D) molybdenum sulfide (MoS2) is a promising candidate for developing efficient and durable LICs due to its wide lithiation potential and unique layer structure, enhancing charge storage efficiency. Modifying the extrinsic features, such as the dimensions and shape at the nanoscale, serves as a potential path to overcome the sluggish kinetics observed in the LICs. Herein, the MoS2 nanoflowers have been synthesized through a hydrothermal route. The developed LIC exhibited a specific capacitance of 202.4 F g-1 at 0.25 A g-1 and capacitance retention of >90 % over 5,000 cycles. Using an ether electrolyte improved the voltage window (2.0 V) and enhanced the stability performance. The ex-situ material characterization after the stability test reveals that the storage mechanism in MoS2-LICs is not diffusion-controlled. Instead, the fast surface redox reactions, especially intercalation/deintercalation of ions, are more prominent for charge storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.