Abstract

Molybdenum is added to improve elevated temperature strength and corrosion resistance for type 316 compared to type 304 stainless steel. Strong carbide forming elements, like titanium and niobium, are also added to these steels to improve creep strength and reduce stress corrosion cracking, as well as to improve resistance to irradiation induced swelling and helium embrittlement. This work shows that fairly pure TiC and NbC form in Ti- and Nb- stabilized versions of type 304 stainless steel (types 321 and 347, respectively); however, the Ti-rich MC dissolves Mo considerably whereas the NbC remains compositionally quite pure when these phases form in Ti- and Nb- modified type 316 stainless steels, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.