Abstract

Orthorhombic molybdenum trioxide (α-MoO3) nanowires as an electrode for electrochemical supercapacitors in ethylammonium nitrate (EAN) electrolyte exhibits a high specific capacitance of 288 Fg−1, which is 8 times higher than the specific capacitance obtained from MoO3 nanowires in water based electrolyte. MoO3 nanowires in EAN electrolyte exhibit energy density of 46.32 Wh kg−1 at a power density of 20.3 kW kg−1 with outstanding cycling stability with specific capacitance retention of 96% over 3000 cycles. We believe that the superior performance of the MoO3 nanowires in EAN based electrolyte is primarily due to its relatively low viscosity (0.28 P at 25 °C), high electrical conductivity (20 mS cm−1 at 25 °C) and large working voltage window. The results clearly demonstrate that EAN as electrolyte is one of the most promising electrolyte for high performance large scale energy storage devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.