Abstract
Shallow, sub-ore-grade molybdenite mineralization has been discovered in the active, high-temperature geothermal system penetrated by Continental Scientific Drilling Program corehole VC-2A at Sulfur Springs, in the western ring-fracture zone of the Valles caldera, New Mexico. This mineralization is hosted by fractured, quartz-sericitized, intracaldera ash-flow tuffs younger than 1.12 Ma. The molybdenite is an unusual, poorly crystalline variety that occurs in vuggy veinlets and breccia cements also containing quartz, sericite (illite), pyrite, and fluorite, as well as local sphalerite, rhodochrosite, and chalcopyrite. Fluid-inclusion data suggest that this assemblage was deposited from very dilute solutions at temperatures near 200/sup 0/C. Geochemical modeling indicates that under restricted pH and fO/sub 2/ conditions at 200/sup 0/C, the molybdenite and associated phases would be in equilibrium with hydrothermal fluids now circulating in the deep subsurface. The shallow molybdenite zone intersected in VC-2A may be the near-surface expression of deep, Climax-type stockwork molybdenum mineralization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.