Abstract

The ability of cancer cells to develop resistance to anti-cancer drugs, known as multidrug resistance, remains a major cause of tumor recurrence and cancer metastasis. This work explores the double mechanism of toxicity of (D, L-lactide-co-glycolide) acid (PLGA) nanoparticles encapsulating a molybdenum cluster compound, namely Cs2[{Mo6I8}(OOCC2F5)6] (CMIF). Hemocompatibility and biocompatibility assays show the safe potential of CMIF loaded nanoparticles (CNPs) as delivery systems intended for tumor targeting for PDT of ovarian cancer with a slight hemolytic activity and a lack of toxicity up to 50 µM CMIF concentration. Cellular uptake shows a preferential uptake of CNPs in lysosomes, which is not interfering with CMIF activity. The double mechanism of CNPs consists in a production of ROS and a DNA damage activity, from 5 µM and 0.5 µM respectively (CMIF concentration). The cellular death mechanism comprises 80% of necrosis and 20% of direct apoptosis by direct DNA damages. This work confirms CMIF loaded PLGA nanoparticles as an efficient and relevant delivery system for PDT

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call