Abstract

Different nitrogen (N) sources have been reported to significantly affect the photosynthesis (Pn) and its attributes. However, molybdenum (Mo) induced effects on photosynthetic efficacy of winter wheat under different N sources have not been investigated. A hydroponic study was carried out comprising of two winter wheat cultivars ‘97003’ and ‘97014’ as Mo-efficient and Mo-inefficient, respectively to underpin the effects of Mo supply (0 and 1 μM) on photosynthetic efficacy of winter wheat under different N sources (NO3̶, NH4NO3 or NH4+). The results revealed that Mo-induced increases in dry weight, gas exchange parameters, chlorophyll contents, NR activities, NO3̶ assimilation, total N contents and transcripts of TaNR and TaNRT1.1 genes under different N sources followed the trend of NH4NO3 > NO3̶ > NH4+, suggesting that Mo has more complementary effects to nitrate nutrition than sole ammonium. Interestingly, under Mo-deprivation environments, cultivar ‘97003’ recorded more pronounced alterations in Mo-dependent parameters than ‘97014’ cultivar. Moreover, Mo application significantly improved the chlorophyll contents and chloroplast configuration in all N sources showing that Mo has a key role in chlorophyll biosynthesis and chloroplast integrity. The results also highlighted that Mo-induced enhancements in total N contents and photosynthetic characteristics followed the same order as NH4NO3 > NO3− > NH4+, suggesting that Mo might affect Pn through N metabolism. In crux, our study findings imply that Mo supply increased Pn not only through chlorophyll synthesis and chloroplast configuration but also by N uptake and assimilation which may represent a strategy of Mo fertilizer to strengthen the photosynthetic machinery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.