Abstract

Engineering electronic properties is a promising way to design nonprecious-metal or earth-abundant catalysts toward hydrogen evolution reaction (HER). Herein, we deposited catalytically active MoS2 flakes onto black phosphorus (BP) nanosheets to construct the MoS2-BP interfaces. In this case, electrons flew from BP to MoS2 in MoS2-BP nanosheets because of the higher Fermi level of BP than that of MoS2. MoS2-BP nanosheets exhibited remarkable HER performance with an overpotential of 85 mV at 10 mA cm-2. Due to the electron donation from BP to MoS2, the exchange current density of MoS2-BP reached 0.66 mA cm-2, which was 22 times higher than that of MoS2. In addition, both the consecutive cyclic voltammetry and potentiostatic tests revealed the outstanding electrocatalytic stability of MoS2-BP nanosheets. Our finding not only provides a superior HER catalyst, but also presents a straightforward strategy to design hybrid electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.